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It is proved analytically that a one-dimensional half-filled polymer chain is subject to two coupled sponta-
neous conformational relaxations, the well-known Peierls bond length alternation and a uniform bond contrac-
tion. These two coupled relaxations work cooperatively against the lattice elastic energy penalty so that all
bonds alternate and contract less than the case when these two relaxations are independent. When the fully
relaxed neutral chain is taken as reference, creating self-localized charge carriers upon doping results in
spontaneous bond contraction within the self-localized domain where the undimerization is enforced. Numeric
results based on the Su-Schrieffer-Heeger and extended Peierls-Hubbard models and ab initio calculations
resolve a long-lasting puzzle observed by x-ray scatterings concerning of the initial zero slope and accompa-
nied sharp knee in the strain response of frans-polyacetylene to the Na* dopant concentration. The demon-
strated doping-induced polymer chain length variation mechanism has implications for ultrafast artificial

muscle designs.

DOI: 10.1103/PhysRevB.81.153102

A one-dimensional (1D) equally spaced metallic polymer
chain of one electron per ionic site is unstable with respect to
the spontaneous relaxation via optical phonons with the
double Fermi wave vector, resulting in a dimerized insulating
polymer chain. This is the Peierls instability, originally de-
rived using the free-electron energy dispersion relation.! A
more rigorous proof was given by Kennedy and Lieb? stating
that such a dimerization is exact without additional symme-
try breakdown, at least for the Su-Schrieffer-Heeger (SSH)
type of Hamiltonians® in which the nearest-neighbor electron
hopping integrals vary linearly with the distance. This work
points to the existence of a ubiquitously coupled twin of the
Peierls distortion, with validations from previously unre-
solved puzzling x-ray scattering data on Na® doped
trans-polyacetylene.*~°

Without loss of generality,'” we follow Kennedy and
Lieb? to focus on the SSH Hamiltonian. It is well recognized
that the SSH Hamiltonian is subject to a spontaneous con-
traction. Explicitly, Su proposed a constant tension of 4«a/
to compensate such a undesired global contraction.!! Later,
Stafstrom and Chao!? suggested a 2% correction to Su’s term
and attributed such a difference to the discrete energy spec-
trum of using a finite system. Vos ef al. expressed the con-
traction as a function of the electron-phonon coupling coef-
ficient for the perfectly dimerized case and obtained the
sound speeds of acoustic and optical modes.!? Nevertheless,
we note that the chain length variation in the above men-
tioned arguments is independent of the polymer charge state;
namely, if the neutral dimerized chain is taken as reference,
no further chain length variations would be expected upon
charge injections. In addition, Bishop et al.'* observed local
contractions at the soliton center via adiabatic exciton dy-
namics and attributed such local contractions to the coupling
between moving solitons and acoustic phonons. In contrast,
static contractions via acoustic phonons toward the soliton
center were noted by Baeriswyl.!> Here we present a theory
originated from the Peierls distortion to describe how con-
ducting polymers are subject to the chain length variation
upon the self-localization of charge carriers without explicit
dynamical couplings.
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We start from the SSH Hamiltonian for an open polymer
chain that contains N carbon-hydrogen (CH) units
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where p,, is the nth CHs momentum; M is the mass; u,, is the
displacement coordinate of the nth CH with respect to the
undimerized chain; and c,'” and ¢, are the creation and
annihilation operators for 7 electrons of spin s at site n,
respectively. Here 7,=2.5 eV, a=4.1 eV/A, and K=21
eV/A23 A half-filled 1D chain described by Eq. (1) is sub-
ject to two spontaneous distortions, the Peierls dimerization
and a global chain contraction. The Peierls dimerization has
an amplitude of uy=2tpexp[—7Kty/ (4a?)—1]/a=0.0386 A
if the chain contraction is ignored. The overall chain contrac-
tion comes from the shrinkage of every bond by da
=—4a/(mK)=-0.2486 A when the Peierls dimerization is
not considered. Figures 1(b) and 1(c) are denoted for these
two distortions, respectively. Here we are going to demon-
strate: (1) the two above mentioned distortions are indeed
coupled to each other as shown in Fig. 1(d) and (2) charge
injections give rise to the dimerization-dependent bond
length variation in self-localized domains, shown as Fig.
1(e).

Letting u,,,;—u,=(—1)"2uy+ da or effectively transform-
ing 7y in Eq. (1) to #)=1y— ada, one may formally keep the
energy dispersion expression,’

e(k) = - [(21{ cos ka)? + (4au sin ka)*]"2. 2)

Integrating it up to the Fermi level gives the electronic en-
ergy per site E,=—4t)E(1-z%)/m, where z=2au,/t, and
E(1-z%) is the elliptic integral of the second kind. In the
small dimerization limit z<<1, the ground-state energy per
site becomes
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This energy expression, also presented in Refs. 13 and 16, is

now plotted as a function of u, and Sa in Fig. 1(f). By ne-

glecting O(z*), one finds the dimerization-dependent da at

equilibrium, defined by JdEy/dda=0, as

Sa=— %{1 + %[hﬁ(“‘;—ﬁ“) + ﬂz(uo, 5a)2}. 3)

For given u, the optimized da may be obtained by solving
Eq. (3) iteratively. The results are plotted as red crosses in
Fig. 1(f), among which the global minimum (red plus) is
located at (u)=0.0200 A, Sa=-0.2478 A). It is worth-
while to mention that Yannoni and Clarke have measured the
bond lengths of double and single bonds of trans-
polyacetylene as 1.36 and 1.44 A, respectively, by the nuta-
tion NMR spectroscopy.'” Their measured bond length dif-
ference agrees better with the shrinkage-coupled 4u
=0.08 A than the shrinkage-decoupled 4u,=0.15 A.'8
Because z is small, analytic expressions for da may also
be obtained. Explicitly, starting with z(?’=0, the first iteration
of Eq. (3) gives a constant da"! =—4a/(7K), which is pre-
cisely what Su proposed.!! In turn, one finds z"()
=2auy/[ty(1+2\)], where N =202/ (7Kt,). The second itera-
tion of Eq. (3) gives an analytic dimerization-dependent

shrinkage
(1
1[1nzﬂ + ﬂ[z“)(uo)P}, @)
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plotted as the blue line in Fig. 1(f). There is essentially no
numeric difference between the analytic blue line and nu-
meric red crosses. Following Stafstrom and Chao'?> by
choosing 1y=0.04 A and da=0 on the right side of Eq. (3),
we obtain a 1.6% correction to Su’s term, which suggests
that the 2% correction found by Stafstrom and Chao'? may
originate from the dimerization-shrinkage coupling.

In the rest of this work, we will choose the fully relaxed
neutral defect-free chain [Fig. 1(d)] as reference to study
how dopings would vary the polymer chain length. Due to
the strong scattering between 1D Fermi electrons and optical
phonons, extra electrons and holes upon dopings will be self-
localized to form topological solitons, polarons, and
bipolarons.® Polarons and bipolarons may be viewed as soli-
ton and antisoliton pairs. The doping-induced self-localized
soliton enforces the counter Peierls distortion; namely, u,
— 0 at the center of the soliton domain. The exact shrinkage
amount (—da) depends on the dimerization amplitude u,, as
shown in Fig. 1(f). Because —da(ug=0)=-da(u,), bonds in
self-localized domains always shrink more than they do in
perfectly dimerized domains. Therefore, taking neutral
defect-free chains as reference, chains containing indepen-
dent self-localized domains will be shorter, shown as Fig.
1(e). Moreover, shrinkages are expected to saturate at high
doping levels when the self-localized domains overlap each
other forming the soliton lattice.

To demonstrate the total amount of chain length variation
upon injecting charges is indeed caused by the presence of
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FIG. 1. (Color online) (a) A 1D half-filled neutral CH chain
suffers for two types of distortions, (b) the Peierls dimerization via
an optical mode, and (c) the bond contraction via an acoustic mode.
(d) These two distortions couple to each other. (¢) Upon doping,
bonds in the self-localized domain contract more than they do in the
perfectly dimerized domain. The ground-state energy contour, color
coded with the energy scale bar located on the right, is plotted as a
function of uy and da in (f). For given u, the self-consistent nu-
merical energy minima computed from Eq. (3), red crosses in (f),
overlap with the analytic blue line. The global minimum (red plus)
and the saddle point (red diamond) correspond to (d) and (c),
respectively.

self-localized domains, we introduce the local strain approxi-
mation (LSA) for the overall chain length variation AL
=Uy_1—Up aS

N
ALjgp= f [Sa(¥(r))aldr = 2, da[y(n)]. (5)
n=1

In Eq. (5) the local shrinkage da is expressed as a functional
of the order parameter y(n)=(—1)"(u,,+u,_;—2u,)/ (4up)
(Ref. 14) which specifies the length difference between
neighboring bonds and more importantly has the local
shrinkage canceled.'® As long as the self-localized domains
are sufficiently smooth, one can use Eq. (3) derived for ho-
mogeneously dimerized chains to define the local shrinkage
functional for chains containing self-localized domains. Ex-
plicitly, we substitute u)y(n) for uy in Eq. (3) and solve for
da iteratively. We note that a non-self-consistent solution of
the LSA was proposed by Baeriswyl.!>
Figure 2(a) shows the order parameters y(n) of a neutral
(blue) and 1e n-doped (red crosses) CH chain under the free-
end boundary condition. Since da are locally canceled in the
definition of y(n),! the perfectly dimerized domain is lo-
cated in the +1 phase and the self-localized polaron domain
follows the original continuum expression’
M =1- irtanhw + %tanhw, (6)
u V2 V26 V2 V2&
where u,=0.0200 A given in Fig. 1(d); n,=115 and
n,=142 are the soliton and antisoliton centers of the polaron,
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FIG. 2. (Color online) (a) Order parameter y(n) for an open
256-CH chain in its neutral (blue) and le n-doped (red crosses)
states. The fitted polaron order parameter using Eq. (6) is plotted in
black. (b) Individual bond length shrinkage &a,,, with respect to the
neutral dimerized state, in the le-(filled symbols) and 2e-(unfilled
symbols) n-doped states computed from the direct measurement
(red) and the LSA (black).

respectively; and £€=21.08 is the half width of soliton.?? Tak-
ing the neutral dimerized chain as reference, the LSA ap-
proximation of using Eq. (5) gives local bond length varia-
tions da,, that agree well with the directly measured values of
8= 5 Uy =ty + 1y —tt,_1) +O(E7?). Integrating the red and
black curves in Fig. 2(b) for le n-doped chain gives the total
shrinkage of AL=-0.0408 A and AL;q,=-0.0439 A,
respectively.

To test our theory against experiments,* we compute the
doping-dependent chain length variation using the SSH
model. As shown in Fig. 3(a), dilute self-localized domains
shorten the polymer chain even though doping weakens 7
bonds. Competition of these two forces give rise to a flat
strain region between 0 and 6% dopings, which explains for
the first time the experimentally observed zero initial slope*
in the Na*-doped trans-polyacetylene. Above this threshold,
self-localized domains overlap with each other which leaves
no space for further undimerization-coupled shrinkages,
polymer chain starts to expand. These results are in sharp
contrast to the rapid strain variations predicted by conven-
tional delocalized electron theories.” If a renormalized hop-
ping integral fy+ada, where da corresponds to the value
obtained by fixing 1,=0.0386 A and 6a=0 on the right side
of Eq. (3), is chosen to maintain the original band gap of
2A,=8auy=1.3 eV, we find stronger shrinkage effects due
to the larger dimerization amplitudes, shown as the violet
line in Fig. 3(b).

To further explore the electron correlation effects, we per-
form the Peierls-Hubbard model,2!?? extended Peierls-
Hubbard model,>>** and ab initio Hartree-Fock (HF)
computations.?>?>26 Explicitly, we consider the following
extended Peierls-Hubbard model Hamiltonian:

U |4 1 1
= 5% Pn.sPn,—s + E 2 <pn,x - E) (pn+l,s’ - E)

n,s,s’
X w
+ 5 2 (pn,x + pn+l,s)Gn,x’ + EE Gn,xGn,—x + H()’
n,s,s" n.s

where the density operator Pn,x=C:C,scn,x and the bond-charge
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FIG. 3. (Color online) (a) Doping-induced strain data of trans-
polyacetylene measured by the x-ray scattering (Ref. 4) and com-
puted by the SSH Hamiltonian of this work, extended Huckel
theory by Kertesz er al. (Ref. 7), density-functional theory by Sun et
al. (Ref. 8) (jellium d=4 A), and semiempirical calculations by
Baughman ef al. (Ref. 9). (b) Doping-dependent strain data com-
puted by the SSH, SSH with renormalized ¢#,, Peierls-Hubbard, and
extended Peierls-Hubbard models as well as ab initio HF calcula-
tions in this work with various experimental measurements (Refs. 4
and 6). Doping ratio ¢ is defined as doping charges divided by total
CH sites, negative for n-type and positive for p-type dopings. Strain
is computed with respect to the corresponding neutral dimerized
chain. Chain length variations are computed for a 160-CH chain,
with no notable differences seen for shorter or longer chains of N
=128 and 256, respectively.

density operator G,M:c:g Scn+1!5+cjl +1.5Cn.s- Standard param-
eters are used, in which' U=4 eV (Refs. 21 and 22) and
(V,X,W)=(0,0,0) for the Peierls-Hubbard model and
(U,V,X,W)=(0.6,0.3,0.15,0.1)t, (Ref. 24) for the extended
Peierls-Hubbard model. All these model Hamiltonian calcu-
lations are performed on an open 256-CH chain with the
self-consistent unrestricted open-shell HF approximation.?!
The Born-Oppenheimer approximation is applied and the
systems are fully relaxed to the optimized configurations. Ab
initio calculations are performed on a N=160 chain with the
3-21G basis set.222526 In gb initio calculations, we consider
the even doping charge cases, varying from —26 (effectively
—16.3% n-doping) to 20 (effectively 12.5% p-doping) and
one odd charge case of 3. The restricted HF and restricted
open-shell HF approximations are applied for the systems
with even and odd charges, respectively. The free-end
boundary condition is applied in all calculations, and for ab
initio calculations the chain end is terminated with one addi-
tional hydrogen atom. The bond length variation results
shown in Fig. 3 do not include the counter ion effects. We
note that Coulomb interactions among solitons and counter
ions do not change the intrinsic electron-phonon nature.
Many other intrinsic thermodynamic properties due to self-
localizations, such as the negative spin density wave,?!
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soliton-induced bending and twisting,’® and multiple self-
localized states,?? also show the similar dependence on ex-
ternal defects such as counter ions. Such insensitivity reflects
the 1D nature of conducting polymers. External defects are
expected to have much stronger influences on kinetic pro-
cesses, such as the mobility of self-localized domains. Be-
cause the on-site U term has little effect on the dimerization
for U<4ty=10 eV,?! the Peierls-Hubbard model (with U
=4 eV) preserves the charge conjugation symmetry as the
SSH model does. See Fig. 3(b). On the other hand, broken
charge conjugation symmetry is observed in both the ex-
tended Peierls-Hubbard model and ab initio HF calculations,
showing stronger shrinkage effects for p doping than n dop-
ing. Experimental data of trans-polyacetylene with Na*, Li*,
K*, and I~ dopants*® are shown in Fig. 3(b) for comparison,
among which the Na® and Li* results have been densely
measured and both indeed showed the zero initial slope and
the sharp knee. We regard them as the first set of experimen-
tal evidences that the well-known Peierls distortion has a
coupled twin.

As a summary, we reveal two generic distortions of a 1D
polymer chain and prove analytically that these two distor-
tions are indeed coupled. Using the perfectly dimerized neu-
tral chain as reference, we show that the chain length shrink-
age within the self-localized domains can be expressed as a
functional of the local dimerization amplitude via the LSA
specified by perfectly dimerized chains. The long-lasting un-
resolved initial flat strain response of frans-polyacetylene
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and the accompanied sharp knee at 6% Na* doping are direct
experimental evidences of such coupled twin distortions.
Furthermore, there are a few implications. First, the coupled
twin distortions are independent of detailed boundary condi-
tions. For instance, doping a closed 1D chain would result in
shrunk self-localized domains and uniformly expanded per-
fectly dimerized domains. Such a contrast makes self-
localized shrinkages more apparent in rings. Second, because
-1 stacks generally have higher «/K ratios along the stack-
ing direction, localized shrinkages are expected to be more
pronounced for polarons in DNA.?’ It is important to note
that shrinkages are caused by the presence of undimerized
polaron cores, independent of the localization origins either
intrinsically or extrinsically by the polarizable solvent.?®
Third, many different actuation mechanisms have been pro-
posed to describe fascinating electroactive materials such as
conducting polymers and carbon nanotubes.?®>*3? Since the
doping-induced polymer strains revealed in this work are
fundamentally associated with the undimerization nature of
self-localized charge carriers, propagating such self-localized
strain fields at the sound speed may offer a direction for
future ultrafast artificial muscle developments.
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